One Class per Named Entity: Exploiting Unlabeled Text for Named Entity Recognition
نویسندگان
چکیده
In this paper, we present a simple yet novel method of exploiting unlabeled text to further improve the accuracy of a high-performance state-of-theart named entity recognition (NER) system. The method utilizes the empirical property that many named entities occur in one name class only. Using only unlabeled text as the additional resource, our improved NER system achieves an F1 score of 87.13%, an improvement of 1.17% in F1 score and a 8.3% error reduction on the CoNLL 2003 English NER official test set. This accuracy places our NER system among the top 3 systems in the CoNLL 2003 English shared task.
منابع مشابه
Improvement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کاملبهبود شناسایی موجودیتهای نامدار فارسی با استفاده از کسره اضافه
Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملA Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features
Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...
متن کاملBANNER-CHEMDNER: Incorporating Domain Knowledge in Chemical and Drug Named Entity Recognition
Exploiting unlabeled text data to leverage the system performance has been an active and challenging research topic in text mining, due to the recent growth of the amount of biomedical literature. Named entity recognition is an essential prerequisite task before effective text mining of biomedical literature can begin. The participants of the CHEMDNER task of the BioCreative IV challenge are as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007